Elementary maths for GMT

Linear Algebra

Part 3: Transformations

Linear transformations

- A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if it satisfies:

$$
\begin{aligned}
& \text { 1. } T(u+v)=T(u)+T(v) \text { for } \\
& \text { all } u, v \in \mathbb{R}^{n}
\end{aligned}
$$

2. $T(c v)=c T(v)$ for all $v \in \mathbb{R}^{n}$ and all scalars c

Linear transformations in graphics

- Many transformations that we use in graphics are linear transformations
- Linear transformations can be represented by matrices
- A sequence of linear transformations can be represented with a single matrix
- With some tricks, we can represent translations and perspective projections with matrices as well

Matrices and linear transformations

- A 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ represents the linear transformation that maps the vector $(x y)^{T}$ to the vector $(a x+b y \quad c x+d y)^{T}$
Or (more readable): $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a x+b y \\ c x+d y\end{array}\right]$
- A 2×3 matrix is a linear transformation that maps a 3D vector to a 2D vector (from some 3-dim. space to some 2-dim. plane)

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a x+b y+c z \\
d x+e y+f z
\end{array}\right]
$$

Example: rotation

- To rotate 45° about the origin, we apply the matrix

$$
\left[\begin{array}{cc}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]
$$

Example: scaling

- To scale with a factor two with respect to the origin, we apply the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Example: scaling

- Scaling does not have to be uniform
- Here, we scale with a factor one half in x-direction and three in y-direction

$$
\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 3
\end{array}\right]
$$

- Q : What is the inverse of this matrix?

Example: reflection

- Reflection in the line $y=x$ boils down to swapping x - and y-coordinates

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- Q: What is the inverse of this matrix?

Example: projection

- We can also use matrices to do orthographic projections, for instance onto the Y-axis

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Q: What is the inverse of the matrix?

Example: reflection and scaling

- Multiple transformations can be combined into one
- Here, we first do a reflection in the line $y=x$, and then we scale with a factor 5 in x-direction, and a factor 2 in y-direction

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 5 \\
2 & 0
\end{array}\right]
$$

- Q: Why is the transformation that is done first rightmost?

Example: shearing

- Shearing in x-direction pushes things sideways

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

- Q: What happens with the x-coordinate of points that are transformed with this matrix? And what with the y-coordinates?
What is the inverse of this matrix?

Finding matrices

- Applying matrices is pretty straightforward, but how de we find the matrix for a given linear transformation?

$$
\text { Let } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

- Q: What is the significance of the column vectors of A ?

Finding matrices

- The column vectors of a transformation matrix are the images of the base vectors!

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \text { and }} \\
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]}
\end{aligned}
$$

- That gives us an easy method of finding the matrix for a given linear transformation

Transposing normal vectors

- Unfortunately, normal vectors are not always transformed properly
- To transform a normal vector n under a given linear transformation A, we have to apply the matrix $\left(A^{-1}\right)^{T}$

- Q: Obviously, for shearing, normal vectors 'behave funny'. But what about rotations? And scaling (uniform and non-uniform)?

Area and determinant

- For any linear transformation, the absolute value of the determinant represents the size change
- For example, if a 2×2 matrix has determinant 3 or -3 , then the linear transformation transforms a unit square to a shape with area 3
- Q: What is going on when the determinant is zero?

Example: rotation

- To rotate 45° about the origin, we apply the matrix

$$
\left[\begin{array}{cc}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]
$$

- Q: What is the determinant?

Example: scaling

- To scale with a factor two with respect to the origin, we apply the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

- Q: What is the determinant?

Example: scaling

- Scaling does not have to be uniform
- Here, we scale with a factor one half in x-direction and three in y-direction

$$
\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 3
\end{array}\right]
$$

- Q: What is the determinant?

Example: reflection

- Reflection in the line $y=x$ boils down to swapping x - and y-coordinates

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- Q: What is the determinant?

Example: projection

- We can also use matrices to do orthographic projections, for instance onto the Y-axis

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Q: What is the determinant?

Determinant $=0$

- The following statements are equivalent for a $n \times n$ matrix A and the linear transformation it represents:

1. The determinant of A is zero
2. The column vectors of A are linearly dependent
3. The image space of the transformation is at most ($n-1$)-dimensional (the transformation is a projection)

More complex transformations

- So now we know how to determine matrices for a given transformation
- Let's try another one: what is the matrix for a rotation of 90° about the point $(2,1)$?

More complex transformations

- We can build our transformation by composing three simpler transformations
- Translate everything such that the center of rotation maps to the origin
- Rotate about the origin
- Revert the translation from the first step
- Q: But what is the matrix for a translation?

Homogeneous coordinates

- Translation is not a linear transformation
- A combination of linear transformations and translations is called an affine transformation
- But shearing in 2D looks a lot like translation in 1D

Homogeneous coordinates

- Translations in 2D can be represented by a shearing in 3D, by looking at the plane $z=1$
- The matrix for a translation over the vector $t=\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]$ is $\left[\begin{array}{ccc}1 & 0 & x_{t} \\ 0 & 1 & y_{t} \\ 0 & 0 & 1\end{array}\right]$
- Q: How should we represent points? And vectors?

Affine transformations

- Q : What is the matrix for the reflection in the line $y=-x+5 ?$
- Hint: move the line to the origin, reflect and move the line back

Affine transformations

- Solution
$\left[\begin{array}{lll}1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=$
$\left[\begin{array}{lll}1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 5 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & -1 & 5 \\ -1 & 0 & 5 \\ 0 & 0 & 1\end{array}\right]$
- The rightmost matrix of the three translates over $(-50)^{T}$, the leftmost matrix translates back over $(50)^{T}$

Affine transformations

- The matrix for reflection in the line $y=-x+5$ is

$$
\left[\begin{array}{ccc}
0 & -1 & 5 \\
-1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

- Q: But what if we translate by $(-4-1)^{T}$? This also makes the line $y=-x+5$ go through the origin...

$$
\left[\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Affine transformations

- The matrix for reflection in the line $y=-x+5$ is

$$
\left[\begin{array}{ccc}
0 & -1 & 5 \\
-1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

- Q: What is the significance of the columns of the matrix?
- Does that give us a faster way to find matrices for affine transformations?

Affine transformations

- Q: What is the matrix for rotation about the point $(2,2)$?

Transformations in 3D

- Transformations in 3D are very similar to those in 2D
- For scaling, we have three scaling factors on the diagonal of the matrix
- Reflection is done with respect to planes
- Shearing can be done in either x-, y-, or z-direction (or a combination thereof)
- Rotation is done about directed lines
- For translations (and affine transformations in general), we use 4×4 matrices

Affine transformations in 3D

- A matrix for affine transformations in 3D looks like

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{1} \\
a_{21} & a_{22} & a_{23} & t_{2} \\
a_{31} & a_{32} & a_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is the linear part and $\left[\begin{array}{l}t_{1} \\ t_{2} \\ t_{3}\end{array}\right]$ is
where the origin ends up due to the affine transformation

Extra terminology

- Some other terms that are important in linear algebra
- Linear subspace: lower-dimensional linear space that includes the origin (or the whole space)
- Kernel and image of a linear transformation: what maps to the origin, and the linear subspace where all vectors are mapped to
- Rank of a matrix: number of linearly independent columns
- Eigenvalue λ and eigenvector v such that $A v=\lambda v$
- When you need to know more, look in any linear algebra textbook

