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• A function 𝑇: ℝ𝑛 → ℝ𝑚 is called a linear 

transformation if it satisfies: 

 

1. 𝑇 𝑢 + 𝑣 = 𝑇 𝑢 + 𝑇(𝑣) for  

all 𝑢, 𝑣 ∈ ℝ𝑛 

 

2. 𝑇 𝑐𝑣 = 𝑐𝑇(𝑣) for all 𝑣 ∈ ℝ𝑛  

     and all scalars 𝑐 
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Linear transformations 
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• Many transformations that we use in graphics are 

linear transformations 

• Linear transformations can be represented by 

matrices 

• A sequence of linear transformations can be 

represented with a single matrix 

• With some tricks, we can represent translations 

and perspective projections with matrices as well 
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Linear transformations in graphics 
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• A 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑

 represents the linear 

transformation that maps the vector (𝑥  𝑦)𝑇 to the 

vector 𝑎𝑥 + 𝑏𝑦   𝑐𝑥 + 𝑑𝑦 𝑇 

   Or (more readable): 
𝑎 𝑏
𝑐 𝑑

𝑥
𝑦 =

𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

 

• A 2 × 3 matrix is a linear transformation that maps 

a 3D vector to a 2D vector (from some 3-dim. 

space to some 2-dim. plane) 

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

𝑥
𝑦
𝑧

=
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧
𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧
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Matrices and linear transformations 
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• To rotate 45∘ about the origin, we apply the matrix 

 

          

1

2
2 −

1

2
2

1

2
2

1

2
2
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Example: rotation 



Elementary maths for GMT – Linear Algebra - Transformations 

• To scale with a factor two with respect to the origin, 

we apply the matrix 

 

             
2 0
0 2
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Example: scaling 
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• Scaling does not have to be uniform 

• Here, we scale with a factor one half in 𝑥-direction 

and three in 𝑦-direction 
 

                  
1

2
0

0 3
 

 

 

• Q: What is the inverse 

 of this matrix? 
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Example: scaling 
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• Reflection in the line 𝑦 = 𝑥 boils down to swapping 

𝑥- and 𝑦- coordinates 

 

               
0 1
1 0

 

 

 

 

• Q: What is the inverse 

of this matrix? 
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Example: reflection 
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• We can also use matrices to do orthographic 

projections, for instance onto the 𝑌-axis 

 

              
0 0
0 1

 

 

 

 

• Q: What is the inverse 

 of the matrix? 
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Example: projection 
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• Multiple transformations can be combined into one 

• Here, we first do a reflection in the line 𝑦 = 𝑥, and 

then we scale with a factor 5 in 𝑥-direction, and a 

factor 2 in 𝑦-direction 

      

       
5 0
0 2

0 1
1 0

=
0 5
2 0

 

 

• Q: Why is the transformation 

that is done first rightmost? 
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Example: reflection and scaling 



Elementary maths for GMT – Linear Algebra - Transformations 

• Shearing in 𝑥-direction pushes things sideways 

 

          
1 1
0 1

 

 

• Q: What happens with the 

𝑥-coordinate of points that 

are transformed with this 

matrix? And what with the 

𝑦-coordinates? 

What is the inverse of this matrix? 

11 

Example: shearing 
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• Applying matrices is pretty straightforward, but 

how de we find the matrix for a given linear 

transformation? 

 

    Let 𝐴 =
𝑎11 𝑎12

𝑎21 𝑎22
 

 

 

• Q: What is the significance 

 of the column vectors of 𝐴? 
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Finding matrices 
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• The column vectors of a transformation matrix are 
the images of the base vectors! 
 

  
𝑎11 𝑎12

𝑎21 𝑎22

1
0

=
𝑎11

𝑎21
 and 

 

  
𝑎11 𝑎12

𝑎21 𝑎22

0
1

=
𝑎12

𝑎22
 

 

• That gives us an easy 

method of finding the matrix 

for a given linear transformation 
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Finding matrices 
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• Unfortunately, normal vectors are not always 

transformed properly 

• To transform a normal 

vector 𝑛 under a given 

linear transformation 𝐴, 

we have to apply the 

matrix 𝐴−1 𝑇 

 

• Q: Obviously, for shearing, normal vectors ‘behave 

funny’. But what about rotations? And scaling 

(uniform and non-uniform)? 
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Transposing normal vectors 
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• For any linear transformation, the absolute value of 

the determinant represents the size change 

 

• For example, if a 2 × 2 matrix has determinant 3 or 

-3, then the linear transformation transforms a unit 

square to a shape with area 3 

 

• Q: What is going on when the determinant is zero? 
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Area and determinant 
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• To rotate 45∘ about the origin, we apply the matrix 

 

          

1

2
2 −

1

2
2

1

2
2

1

2
2

 

 

 

• Q: What is the 

determinant? 
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Example: rotation 
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• To scale with a factor two with respect to the origin, 

we apply the matrix 

 

             
2 0
0 2

 

 

• Q: What is the 

determinant? 
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Example: scaling 
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• Scaling does not have to be uniform 

• Here, we scale with a factor one half in 𝑥-direction 

and three in 𝑦-direction 
 

                  
1

2
0

0 3
 

 

• Q: What is the 

determinant? 
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Example: scaling 
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• Reflection in the line 𝑦 = 𝑥 boils down to swapping 

𝑥- and 𝑦- coordinates 

 

               
0 1
1 0

 

 

 

• Q: What is the 

determinant? 
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Example: reflection 
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• We can also use matrices to do orthographic 

projections, for instance onto the 𝑌-axis 

 

              
0 0
0 1

 

 

 

• Q: What is the 

determinant? 
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Example: projection 
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• The following statements are equivalent for a 𝑛 × 𝑛 

matrix 𝐴 and the linear transformation it 

represents: 

1. The determinant of 𝐴 is zero 

2. The column vectors of 𝐴 are linearly dependent 

3. The image space of the transformation is at most 

(𝑛 − 1)-dimensional (the transformation is a projection) 
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Determinant = 0 



Elementary maths for GMT – Linear Algebra - Transformations 

• So now we know how to determine matrices for a 

given transformation 

 

• Let’s try another one: 

what is the matrix for 

a rotation of 90∘ about 

the point (2,1)? 
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More complex transformations 
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• We can build our 
transformation by 
composing three simpler 
transformations 
– Translate everything such 

that the center of rotation 
maps to the origin 

– Rotate about the origin 

– Revert the translation from 
the first step 

• Q: But what is the matrix 
for a translation? 
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More complex transformations 
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• Translation is not a linear transformation 

• A combination of linear transformations and 

translations is called an affine transformation 

 

• But shearing in 2D looks 

a lot like translation in 1D 
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Homogeneous coordinates 
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• Translations in 2D can be represented by a 

shearing in 3D, by looking at the plane 𝑧 = 1 

• The matrix for a translation over the vector 𝑡 =
𝑥𝑡

𝑦𝑡
 

is 
1 0 𝑥𝑡

0 1 𝑦𝑡

0 0 1

 

 

• Q: How should we represent points? And vectors? 
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Homogeneous coordinates 
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• Q: What is the matrix for the reflection in the line 

𝑦 = −𝑥 + 5? 

 

• Hint: move the line to 

the origin, reflect and 

move the line back 
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Affine transformations 
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• Solution 

1 0 5
0 1 0
0 0 1

0 −1 0
−1 0 0
0 0 1

 
1 0 −5
0 1 0
0 0 1

= 

1 0 5
0 1 0
0 0 1

 
0 −1 0

−1 0 5
0 0 1

= 
0 −1 5

−1 0 5
0 0 1

 

 

• The rightmost matrix of the three translates over 
−5  0 𝑇, the leftmost matrix translates back over 
5  0 𝑇 
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Affine transformations 



Elementary maths for GMT – Linear Algebra - Transformations 

• The matrix for reflection in the line 𝑦 = −𝑥 + 5 is 
 

0 −1 5
−1 0 5
0 0 1

 

 

• Q: But what if we translate by (−4  − 1)𝑇? This 

also makes the line 𝑦 = −𝑥 + 5 go through the 

origin... 
1 0 4
0 1 1
0 0 1

0 −1 0
−1 0 0
0 0 1

 
1 0 −4
0 1 −1
0 0 1
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Affine transformations 
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• The matrix for reflection in the line 𝑦 = −𝑥 + 5 is 
 

0 −1 5
−1 0 5
0 0 1

 

 

• Q: What is the significance of the columns of the 

matrix? 

• Does that give us a faster way to find matrices for 

affine transformations? 

29 

Affine transformations 
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• Q: What is the matrix for rotation about the point 

(2, 2)? 
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Affine transformations 
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• Transformations in 3D are very similar to those in 

2D 

– For scaling, we have three scaling factors on the 

diagonal of the matrix 

– Reflection is done with respect to planes 

– Shearing can be done in either 𝑥-, 𝑦-, or 𝑧-direction (or a 

combination thereof) 

– Rotation is done about directed lines 

– For translations (and affine transformations in general), 

we use 4 × 4 matrices 
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Transformations in 3D 
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• A matrix for affine transformations in 3D looks like 
 

𝑎11 𝑎12 𝑎13 𝑡1

𝑎21 𝑎22 𝑎23 𝑡2

𝑎31 𝑎32 𝑎33 𝑡3

0 0 0 1

 

   where 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 is the linear part and 

𝑡1

𝑡2

𝑡3

 is   

   where the origin ends up due to the affine  

   transformation 
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Affine transformations in 3D 
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• Some other terms that are important in linear 

algebra 

– Linear subspace: lower-dimensional linear space that 

includes the origin (or the whole space) 

– Kernel and image of a linear transformation: what maps 

to the origin, and the linear subspace where all vectors 

are mapped to 

– Rank of a matrix: number of linearly independent 

columns 

– Eigenvalue 𝜆 and eigenvector 𝑣 such that 𝐴𝑣 = 𝜆𝑣 

• When you need to know more, look in any linear 

algebra textbook 
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Extra terminology 


